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Fluctuation effects in lamellar phases of ternary asymmetric amphiphilic systems are considered.
These systems are characterized by two length scales corresponding to the thickness of the oil and
water layers. For large separations between the amphiphilic layers, the dominant contribution to
the free energy can be written in the Helfrich form if an effective bending rigidity is introduced that
is allowed to depend on the water and oil layer thicknesses. The scaling form of this effective rigidity
is determined from Monte Carlo simulations of an asymmetric three-layer system. An expression
for the effective layer compressibility is derived, which can be expressed in terms of the effective
bending rigidity. These effects lead to pronounced corrections of the scattering exponents 7,,, which

can be measured in scattering experiments.

PACS number(s): 82.70.—y, 64.60.—i, 87.22.Bt, 68.15.+€

I. INTRODUCTION

One of the rather intriguing structures obtained upon
mixing an amphiphilic material with water and oil is
the lamellar phase, in which alternating layers of oil
and water are separated by monomolecular layers of am-
phiphilic molecules [1,2]. The origin of this mesostruc-
ture lies in the physical properties of the amphiphilic
molecules, which are composed of both a hydrophilic
and a hydrophobic part, thus preferring to be located
at a boundary between water and oil regions. This phase
has been obtained in several theoretical treatments start-
ing from microscopic Hamiltonians [3] and generalized
Landau-Ginsburg free energies [4]. A rather complimen-
tary route derives effective free energies for lamellar and
other phases [5] from the well-known expression for the
bending energy of thin sheets [6]. The dominant contri-
bution to the effective free energy in the lamellar phase
is due to thermal fluctuations and results mainly from
the loss of configurational entropy of amphiphilic layers
in the presence of impenetrable neighboring layers. For
a single pair of layers with mean separation ¢, this free
energy can be shown to behave like [7]

C_f[T2

Va(l) = K2 (1)

for large separations ¢ between neighboring membranes
with K being the bending modulus of a single lamella
and T the temperature. In previous treatments of the
lamellar phase, the free energy per separation coordinate
has usually been taken to be (1) independent of the total
number of layers in the stack, thereby neglecting possi-
ble corrections for the coeflicient cyg; [8]; the justification
for this procedure has been given only recently and con-
sists of the quasiseparability of a symmetric, constrained
stack of membranes (or amphiphilic sheets) [9]. The
form of the fluctuation potential Vy;(€) as given by (1)
has been verified experimentally by small-angle x-ray
scattering experiments on swollen stacks of surfactant
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bilayers [10,11].

In fact, the simple superposition procedure of calcu-
lating the total free energy of a multilamellar stack by
simply adding the free energies of the individual pairs of
amphiphilic layers each assumed to be given by (1) fails
if the stack becomes asymmetric, i.e., if the separations
between individual amphiphilic sheets are not the same
throughout the system. This is the case in asymmetric
ternary lamellar systems, for which the amounts of wa-
ter and oil are unequal. To understand how this failure
comes about, consider a stack of NV + 1 amphiphilic lay-
ers, each parametrized by a displacement field /,,(x). The
relative displacement fields, or separations between the
lamellae, are denoted by 61, = l,,+1 — I, and are always
positive, thus taking into account the impenetrability of
individual layers. The mean separation, given by a ther-
mal average, is denoted by £, = (4l,,). A symmetric stack
is defined by £ = £,, for all n and is realized for a ternary
system in the lamellar phase region with equal amounts
of water and oil (neglecting boundary effects). Consider
now deviations from this symmetric case by changing the
relative amounts of water and oil. Clearly, for the ex-
treme case of no oil present at all, one is left with a
bilayer system, in which case the fluctuation interaction
for the displacement field equivalent to the thickness of
a water layer should be given by (1), but with a bend-
ing constant K twice as large as for the monolayer case.
This stands in vivid contrast to the simple superposition
principle outlined above. For asymmetric systems with
varying oil and water thicknesses, the fluctuation poten-
tial will show a smooth crossover from the behavior of
symmetric systems [with only small corrections to (1)] to
the behavior of the limiting bilayer case.

In this article it is shown that the general form of the
repulsion interaction (1) can still be maintained in the
general case of asymmetric ternary amphiphilic systems
upon introduction of an effective bending rigidity K°ff
that depends on the individual thicknesses of the water
and oil layers. The explicit scaling form of this effective
rigidity is determined using Monte Carlo simulations of a
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stack of elastic layers. It is further shown how these new
effects modify the layer compressibility modulus B of an
asymmetric system. This, in turn, leads to pronounced
and experimentally accessible variations of the exponents
Tlm, governing the algebraic decay of the mth quasi-Bragg
peak. These results should also be of importance for the
calculation of phase diagrams of amphiphilic systems fea-
turing the microemulsion phase and disordered phases in
addition to the lamellar phase; a dependence of the effec-
tive rigidity on the asymmetry will influence the mutual
stability of different phases.

II. ASYMMETRIC LAMELLAR AMPHIPHILIC
SYSTEMS

Asymmetric amphiphilic systems are characterized by
unequal amounts of water and oil. In the lamellar phase,
one thus obtains water and oil layers of different thick-
nesses. For the general case, the fluctuation free energy
of the nth displacement field can, in analogy to (1), be
written as

Cﬂfr2

Vf(zn)({ZN}) ~ m

; (2)

which can be viewed as a definition of the effective bend-
ing rigidity K27 of the nth displacement field [12]. The
usefulness of this definition lies in the accessibility of
K¢/t and its predictive power, as will be demonstrated in
later sections. This effective rigidity in the most general
case depends on all mean separations in the stack. For
the symmetric case, it has been shown that K¢/f ~ K to
a very good approximation [9], where K stands for the
bending rigidity of a single layer, or the constant entering
(1) for the case of a single pair of layers.

For the restricted case of a ternary amphiphilic system,
one has £,, = £, for all n, so that, in this case, one can
write

K ({en}) = K (U1 /ln, br), (3)

neglecting the dependence on the total number of lay-
ers N, which is very small [9]. In Sec. IIC the scaling
function K¢ff(z,y) is extracted from Monte Carlo simu-
lations of three elastic layers.

A. Line shapes of quasi-Bragg peaks

Experimentally, the interactions between fluctuating
layers in a stack can be determined using small-angle
x-ray scattering. In these experiments, the separation
between the lamellae is fixed by the amount of solvent
added. Due to the large fluctuations in these systems, the
Bragg peaks are replaced by power law singularities |g —
gm|™ 2 centered around ¢,, = 2rm/d and characterized
by exponents [14]

Tq?
m = ——"L—a 4
K 87V Bk “)
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where B and k are the compressibility and bending vol-
ume moduli, respectively, given by

k= K/d, (5)
8%F(d
B=d ad(z)' (6)

The repeat distance d is defined as the sum of the sepa-
ration £ between layers and the layer thickness 4,

d=1+56. (7)

For lamellar systems that are above their unbinding tem-
perature and thus can, in principle, be swollen indefi-
nitely, short-ranged forces are rather unimportant and
only lead to correction terms to (1) for small separations
between the layers [15]. For symmetric systems, the dom-
inant contribution to the interaction free energy F(d) is
thus given by (1), in which case the exponents 7,, turn
out to be

—_.ﬂ-_mz__ 1_§ 2_ o2 1_§2 (8)
= e\ d) T i)

Taking the Helfrich estimate cs; = 3w2/128 [6], one ob-
tains n°° = 4/3, which is in quantitative agreement with
experimental results. Extensive Monte Carlo simulations
point to a value of ¢y half as large [9,16,17], a discrepancy
not satisfactorily resolved so far [15,18]. The effects con-
sidered in this article show that the exponents 7, should,
in fact, depend continuously on the thickness ratio of the
oil and water layers, leading to a decrease of the values
of 7,,. Since the experiments were actually done for var-
ious ratios of water and oil layer thicknesses [10,11], this
could explain the disagreement between measurements
and theoretical predictions using Monte Carlo estimates
of ¢ fl-

B. Effective compressibility

In this section the effective compressibility B¢ff for
an asymmetric amphiphilic system is calculated, which
will be needed for the evaluation of 7,,. As noted above,
ternary systems are completely specified by the two sep-
arations corresponding to the water and oil layer thick-
nesses. The free energy for a subsystem consisting of only
three neighboring layers (envisioned to be embedded in
an infinite stack) can be written as

CﬂT2
K112

CﬂT2

F(5l1,5l2) = m

+ Pyély + + Pl , (9)

where 8l; and §l; are the displacement fields correspond-
ing to the water and oil layer thicknesses, or vice versa.
The Lagrange multipliers P; and P, have been intro-
duced in order to vary the mean separations indepen-
dently and correspond to pressure variables. The mean
separations £, (with a = 1, 2) follow from minimizing the
expression (9) and are given by
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fo— (22072 )" (10)
* T \k'pP, '

For the calculation of the effective layer compressibility,
it is useful and sufficient to expand (9) up to second order
in él,, leading to

2 — 2
F(8ly,6l,) = 3eaT (_1_ + (0l — £4) )

KT\ ¢
3CﬂT2 1 (512 - 22)2
+ KT (eg + @ ) (11)

The repeat distance for vanishing layer thickness is de-
fined by d = 8l; + él, (the case of finite thickness will be
considered only at the end); minimizing the free energy
expression (11) with respect to the water and oil layer
thicknesses §/; and 4, at fixed repeat distance d, one
finally obtains the expression

1 1
+
Ktte kg4

(d— & — £)?
. 12
Ki'ed + K577 e (12)

F(d) = 3CﬂT2 (

From this expression and the definition (6), the effective
compressibility is easily identified to be

GCﬂde

Beff — ,
Kot + K574

(13)

thus depending on the effective bending rigidities for the
two inequivalent separations.

A related expression for the effective compressibility is
obtained if the layers themselves are compressible, which
could be due to the intrinsic fluidity of the amphiphilic
layers or due to adsorbed polymers. In all these cases,
the free energy for a system of two layers including the
compressibility of the layers, characterized by a modulus
v, can, in analogy to (9), be written as

CflTZ
K12

F= %(5 —60) + + Pél, (14)
where §p is the equilibrium thickness of the layer. Defin-
ing the repeat distance as d = 8l + ¢ and repeating the
calculation that lead to (13), one obtains for the free en-
ergy in this case

F= 3CﬂT2 (d —£— 50)2
- K2 2/’7+KZ4/3C]¢1T2.

(15)

The effective compressibility in this case can be seen to
be
1 1 1

—

i — 16
BFF = 7d T BO (16)

with the bare compressibility according to (6) and (7)
given by

0 __ GCﬂde
B° = Kt (17)
The compressibility modulus B¢ff can thus be consider-
ably decreased, depending on the actual value of the layer
compressibility modulus . The expected values for the
exponents 7, will thus increase, see (4); however, this
will make the discrepancy between the measured expo-
nents and the theoretical predictions using the Monte-
Carlo value for c¢; only larger. With a different start-
ing point for a similar idea, the opposite conclusion was
drawn in Ref. [18].

C. Scaling form of the effective rigidity

In this section the explicit scaling function KX¢ff(z,y)
of the effective bending rigidity is determined. The mini-
mal system where this can be done is an asymmetric stack
of three layers, which is studied by extensive Monte Carlo
(MC) simulations. The effective Hamiltonian for such a
system can be written as

H{ly, s, ls} = /dzx{i [g [V2L,(x)] 2}

+ Pyl (x) — 1 (x)]
+Pyfls(x) tz(xn}, (18)

where the displacement field [,(x) parametrizes the
shape of the nth membrane. The bending energies are
approximated by the layer curvatures, and the pressures
P; and P, are introduced so as to produce finite and dif-
ferent separations between the layers. The spontaneous
curvature has not been included in the effective Hamilto-
nian; it does not effect the phase behavior because the in-
tegral over such a term vanishes for the lamellar topology
[19]. The hard-wall interaction is implicitly embodied by
the constraint {; < lo < l3. After discretization of the co-
ordinate x with lattice constant a| and using the dimen-

sionless continuous height variables z, = l,/K/T/a,
the only remaining parameters are the rescaled pressures
Do = Paa‘?l /VKT. The MC simulations typically con-

sisted of 107 MC steps using square lattices with up to
12 500 sites [20,21].

Three series of simulations at fixed reduced pressures
of p; =0, p1 = 0.01, and p; = 0.1 were performed, where
the other pressure p, was varied over four orders of mag-
nitude. The first series with p; = 0 corresponds to a
system of only two layers since, in this case, the layer
parametrized by !; is unbound from the other two layers
and consequently has not been included in the simula-
tion. In Figs. 1(a) and 1(b) the results for the separa-
tions (822) = (23 — 22) and (6z1) = (22 — z;) are shown
as a function of p;. The mean separation (6z3), which is
coupled to p3, scales accurately like ~ p, 173 for all three
values of p;, in agreement with (10) and denoted by the
straight line in the double-logarithmic plot in Fig. 1(a).
For p; = 0.01 (open squares) and p; = 0.1 (open circles)
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FIG. 1. Mean separations (§z.) in a stack of three layers
as a function of the pressure p; for fixed pressure p; = 0
(crosses), p1 = 0.01 (squares), and p1 = 0.1 (circles). (a)
Results for (dz2) in a double-logarithmic plot, scaling like
~ Py /3 for sufficiently small pressure p»; the asymptotic scal-
ing is denoted by a straight line. (b) Results for (§z1) on a
linear vertical scale, approaching constant values (denoted by
broken lines) as p2 — 0. The statistical errors are denoted
by vertical bars which are omitted if smaller than the symbol
size.

there are only very small deviations from the results for
p1 = 0 (crosses), which have to be attributed to changes
in the effective rigidity. The straight line has been drawn
using the value cg; = 0.1161, which is the best estimate
for cy; available [9]. In Fig. 1(b) one sees that there
are small deviations of (6z;) from the asymptotic value
(obtained for p, = 0 and denoted by broken lines) for
p1 = 0.01 (filled squares) and p; = 0.1 (filled circles) as
the pressure p, increases.

In order to extract the influence of one fluctuating sep-
aration coordinate on the other, which is the mechanism
for changes in the effective bending rigidity, one divides
the data of Fig. 1 by the separation of a single pair of
layers at corresponding pressures; the result of this proce-
dure is shown in Fig. 2. It is evident that the separation
ratios for p; = 0.01 and p; = 0.1 (denoted by squares
and circles, respectively) scale similarly with a proper
rescaling of the pressure variable, accomplished by choos-
ing pa/p1 or p1/p2 as plot parameters. The broken lines
drawn in Figs. 2(a) and 2(b) denote the expected sep-
aration ratios in the limits pp/p; — 0 and p;/p2 — O,
respectively, given by (3/4)!/3, as follows from the fol-
lowing argument: In either of these limits, one pair of
layers is much closer together than the other, and be-
haves effectively like a single layer with a bending rigidity
of 2K. The effective bending rigidity of the separation
coordinate of the other pair is then given by 2K/3 [22].

ROLAND R. NETZ 52

1.0 WW

<0z,>
<8z,(p;=0)>]

1.0
gt
)
<dz>
<6z,(p=0)> ;Hﬁ

0.9 . .
103 102 107 109 10' 102
P/P2

FIG. 2. Same data as in Fig. 1 now plotted as ratios of (a)
(8z2(p1,p2)) and (622(0,p2)) as a function of p2/p: and (b)
ratios of (8z1(p1,p2)) and (§z1(p1,0)) as a function of p1/p2.
The two different sets of data agree within the numerical er-
rors and approach the value (3/4)'/3, which is denoted by
broken lines; see text.

Since the bending rigidity of the separation coordinate
of a pair of two single membranes (with rigidity of K
each) is given by K /2, one obtains for the ratio of the
mean separations each given by (10) the value (3/4)/3.
This asymptotic value is approached already for pressure
ratios of ~ 1/1000, as can be seen from Fig. 2(b).

In the next step the effective bending rigidity of a sep-
aration coordinate is determined from the Monte Carlo
data. Using definition (2) and relation (10), one obtains

K[ [ Gralpara)\ ]
K ‘[2<<6za(pa,0)>) 1] @

which is plotted in Fig. 3 as a function of (§z3)/(624),
with the symbols retaining their previous definitions.
This graph corresponds to a plot of the scaling function
Keff(z,y) as a function of x only. The dependence on
the sccond argument is negligible over the length scales
considered in the simulation, as follows from the good
agreement between the data for p; = 0.01 (squares) and
p1 = 0.1 (circles). The solid line in Fig. 3 denotes the
scaling function

;ceff(w,y) N ;Ceff(x) o :r“
K - K - zh + b’

(20)

with the fit value o = 0.3 £+ 0.005 and the exponent

p=3/24+02. (21)
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FIG. 3. Rescaled effective bending rigidity K&ff/K as a
function of (dzg)/(6za), which corresponds to a plot of the
rescaled scaling function K°ff(z,y)/K defined by (3) as a
function of z only. The dependence on the second argument
is small and can be neglected for the range of length scales
considered here. The solid curve is the heuristic scaling given
by (20) and agrees with the data over the whole range of
length scales. To the left, the effective bending rigidity cor-
responds to the case of bilayers given by K¢/ /K = 2, to the
right one recovers the behavior of monolayers characterized
by K</ /K = 1.

The agreement with the data is satisfactorily over the
whole range of data. The dependence on the second ar-
gument y seems to be very small and is not detectable
for the length scales considered numerically.

D. Effective exponents 7,

The closed form result for the effective bending rigid-
ity (20) allows one to calculate the exponents 7, for the
case of asymmetric amphiphilic systems. The starting
point is expression (4), in which the effective compress-
ibility modulus Beff given by (13) has to be inserted.
The volume bending modulus « is not modified by the
fluctuation effects considered here and is given by 2K/d,
independent of the separations between the layers. Tak-
ing into account the finite thickness § of a monolayer, the
final result for the exponents can, in analogy to (8), be
written as

_ 26\ ?

with the correction factor given by

e e 1/2
Kiffed 4 Ksz£§> (23)

_.(£17£2) - < ZK(fl +e2)4
With the heuristic scaling form (20), this correction fac-
tor can be calculated explicitly and is plotted in Fig.
4 as a function of the ratio of the oil and water thick-
nesses. As one would expect, the correction factor is
invariant with respect to an interchange of the oil and
water thicknesses and is one for the pure bilayer case,
(628)/(624) = 0, and reaches ~ 1/4 as the symmetric
case defined by (6z3)/(6z4) = 1 is approached. The value
1/4 is expected in the absence of any dependence of the

[1]

(X

<dzp>/<dz,>

FIG. 4. Correction factor of the exponents 7,, as a function
of the oil-water layer thickness ratio. For bilayer systems,
i.e., for (8z5)/(6za) = 0, the factor is 1 and one recovers the
original result. For symmetric systems with (dzg)/(6za) =1
the correction is roughly 1/4.

effective bending rigidity K¢/ on the number of layers
N, which corresponds to K¢ff(1,y) = 1 for y — oco. The
value E(¢,¢) = 1/4 then follows for large ¢, since the
scattering at a repeat distance d for the symmetric case
corresponds to the first subharmonic defined by m = 1/2,
see (8).

III. SUMMARY AND DISCUSSION

The behavior of lamellar phases of asymmetric am-
phiphilic systems has been considered. Formally, these
systems can be described by asymmetric stacks of elas-
tic layers that are held together by pressures that vary
between the different separation coordinates. Main con-
sideration has been given to ternary amphiphilic systems,
for which there are two inequivalent displacement fields,
namely the thickness of the water and the oil layers. The
behavior of such a system can, to a very good approxima-
tion, be gathered from a three-layer system with two dif-
ferent external pressures acting between the layers, which
has been studied by extensive Monte Carlo simulations.

The fluctuation force for each separation coordinate
can be written in the standard form introduced by Hel-
frich, given that the bare bending rigidity is replaced
by an effective rigidity that is allowed to depend on the
two inequivalent separations. The effective rigidity for a
given separation coordinate crosses over smoothly from
the bare value of an isolated layer to a value twice as large
(and thus corresponding to a bilayer) as the mean value
of the other separation coordinate goes to zero. For the
moderate separations considered numerically, the data
are accurately described by a simple scaling function for
the effective bending rigidity that depends only on the
ratio of the oil and water separations. These findings
should have pronounced effects on the relative stability
of the lamellar phase compared to other phases found for
amphiphilic systems, resulting in a shift of phase bound-
aries. The predictions for the effective elastic moduli
can be checked quantitatively by x-ray scattering exper-
iments on asymmetric lamellar systems, which yield the
exponents 7,,. These exponents are predicted to be pro-
portional to a correction factor =, which has been calcu-
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lated explicitly (see Fig. 4) and depends sensitively on
the ratio of the oil and water layer thicknesses. In the
analysis of previous experiments, this correction factor
has been neglected. In one set of experiments, the sepa-
ration ratio was varied between =~ 1 and = 7 [10], leading
to values of the correction factor £ between =~ 1/4 and
~ 2/3 (see Fig. 4). In fact, if one uses the latter value of
Z together with the Monte-Carlo estimate for the fluctua-
tion amplitude cy; instead of Helfrich’s original estimate,
one obtains values for the exponents 7, very close to the
ones that were successfully used to fit the experimental
data. Additional corrections are expected for small sep-
arations due to van der Waals attraction between the
lamellae [15]. In summary, the effects discussed in this
article considerably modify the fluctuation-induced in-
teraction in asymmetric lamellar stacks. They have been
neglected in the data analysis of scattering experiments
so far, and might help to reconcile experimental results
and theoretical estimates for the fluctuation strength cy;.

The data taken numerically extend to a maximal value
of (6z) ~ 5, which corresponds to an experimental sep-
aration of £ ~ 100 A, using K/T ~ 1 and aq) =~ 20
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A roughly corresponding to the thickness of amphiphilic
layers. Although the accuracy of the scaling function (20)
has only been tested for a restricted range of separations,
it is exactly this range that is accessible experimentally.
Modifications to the scaling form as given by (20) could
come in for much larger separations, which probably can-
not be realized experimentally. The asymptotic behavior
of K(z,y) for large y has been considered for the sym-
metric case characterized by = = 1 [9]. There it was
found that the data are compatible with K(1,y)/K =1
for y — oo, but a slightly larger value [as suggested by
the scaling function (20)] could not be ruled out due to
numerical errors. Deviations from (20) would probably
come in through a y dependency of o and possibly also
.
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